• 1
  • 2
  • 3

๐Ÿ’ฌ Try ML2's LLM chatbot now !

๐Ÿ—ž๏ธ Recent SNS Updates

blog
alt

ML2 ์กธ์—…์ƒ ์ธํ„ฐ๋ทฐ - ๐ŸŽ’ KAIST EE Co-opํŽธ2

2023.09.26 |ย Jinmyoung LEE

ML2์—์„œ๋Š” ์นด์ด์ŠคํŠธ์™€ ํ˜‘๋ ฅํ•˜์—ฌ EE Co-op์„ ์šด์˜ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 2023๋…„ EE Co-op์— ์ฐธ์—ฌํ•œ ์นด์ด์ŠคํŠธ ์ „๊ธฐ๋ฐ์ „์ž๊ณตํ•™๋ถ€ ๋ฐ•์ฑ„์ง„ ๋‹˜๊ณผ์˜ ์ธํ„ฐ๋ทฐ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.

alt

ML2 ์กธ์—…์ƒ ์ธํ„ฐ๋ทฐ - โœˆ๏ธ ์œ ํ•™ํŽธ2

2023.08.21 |ย Jinmyoung LEE

ML2์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ๋ถ„๋“ค์ด ๊ธฐ์กด์˜ ์—ฐ๊ตฌ ๊ฒฝํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ์„ ์ง„ํ–‰ํ•˜๋Š” Research Resident ํฌ์ง€์…˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฒˆ ์ธํ„ฐ๋ทฐ์—์„œ๋Š” 2022๋…„ 9์›”๋ถ€ํ„ฐ ์˜ฌํ•ด 8์›”๊นŒ์ง€ Research Resident๋กœ ๊ทผ๋ฌดํ•˜์…จ๋˜ ์ •์œค๋‹˜์˜ ์ด์•ผ๊ธฐ๋ฅผ ๋‹ด์•„๋ณด์•˜์Šต๋‹ˆ๋‹ค.

alt

Blockchain Graph Analysis using GNN

2023.07.25 |ย Anthony W. JUNG, ย Jungyoon LEE

We wanted to work on a large, real-world graph data, so we chose a blockchain graph; we were able to make a basic anomaly detection ML model work, but found it difficult to build neither a comprehensive dataset nor a robust graph neural network due to the insufficient capabilities of existing GNNs and the lack of node features.

alt

Image Retrieval based Robot Global Localization

2023.06.01 |ย Chaehyeuk LEE,ย Jaehwan CHOI

In this post, we would like to share our experience in image retrieval problem for robot global localization with machine learning. We adopted the method proposed by HF-Net.

alt

euroLLVM2023

2023.05.24 |ย Jinmyoung LEE

์˜ฌํ•ด 5์›” EURO LLVM Developersโ€™ Meeting์— ๋ฐœํ‘œ์ž๋กœ ์ฐธ์„ํ•˜๊ฒŒ ๋˜์–ด ํ•™ํšŒ ์ฐธ์„๊ธฐ๋ฅผ ์ž‘์„ฑํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค. euroLLVM์€ LLVM Foundation์—์„œ ์ฃผ์ตœํ•˜๋Š” ๊ตญ์ œ ํ•™ํšŒ๋กœ, ์˜คํ”ˆ์†Œ์Šค ์ปดํŒŒ์ผ๋Ÿฌ ํ”„๋ ˆ์ž„์›Œํฌ์ธ LLVM๊ณผ LLVM ๊ด€๋ จ ํ”„๋กœ์ ํŠธ๋“ค์˜ ๊ฐœ๋ฐœ์ž์™€ ์‚ฌ์šฉ์ž๋“ค์ด ๋ชจ์—ฌ ๋ฐœํ‘œํ•˜๊ณ  ๋„คํŠธ์›Œํ‚นํ•˜๋Š” ์ž๋ฆฌ์ž…๋‹ˆ๋‹ค.

alt

Spot the Difference with LLVM-FLOW: an open-source interactive visualization tool for comparing IR CFGs

2023.05.24 |ย Jinmyoung LEE

LLVM-FLOW is an open-source project that provides interactive visualization of LLVM IR Control Flow Graphs (CFG). With LLVM-FLOW , users can easily compare the CFG before and after optimization.